Automatic extraction of brain surface and mid-sagittal plane from PET images applying deformable models

نویسندگان

  • Jouni M. Mykkänen
  • Jussi Tohka
  • Jouni Luoma
  • Ulla Ruotsalainen
چکیده

In this study, we propose and evaluate new methods for automatic extraction of the brain surface and the mid-sagittal plane from functional positron emission tomography (PET) images. Designing methods for these segmentation tasks is challenging because the spatial distribution of intensity values in a PET image depends on the applied radiopharmaceutical and the contrast to noise ratio in a PET image is typically low. We extracted the brain surface with a deformable model which is based on a global optimization algorithm. The global optimization allows reliable automation of the extraction task. Based on the extracted brain surface, the mid-sagittal plane was determined. The method was tested with the image of the Hoffman brain phantom (FDG) and the images from the brain studies with the FDG (17 images) and the C11-Raclopride tracers (4 images). In addition to the brain surfaces, we applied the deformable model for extraction of the coarse cortical structure based on the tracer uptake from FDG-PET brain images. The proposed segmentation methods provide a promising direction for automatic processing and analysis of PET brain images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization-based deformable meshes for surface extraction from medical images

This thesis deals with surface extraction from noisy volumetric images, which is a common problem in medical image analysis. Due to noise, the use of a-priori information about surface topology and shape is necessary for automatic surface extraction methods. Deformable surface models can incorporate such geometric knowledge into extraction process which is restated as an energy minimization pro...

متن کامل

Fast and Robust Mid-Sagittal Plane Location in 3D MR Images of the Brain

Extraction of the mid-sagittal plane (MSP) is an important step for brain image registration and asymmetry analysis. We present a fast MSP extraction method for 3D MR images, which is based on automatic segmentation of the brain and on heuristic maximization of cerebro-spinal fluid within the MSP. The method is shown to be robust to severe anatomical asymmetries between the hemispheres, caused ...

متن کامل

Deformable Organisms for Automatic Medical Image Analysis

We introduce a new approach to medical image analysis that combines deformable model methodologies with concepts from the field of artificial life. In particular, we propose "deformable organisms", autonomous agents whose task is the automatic segmentation, labeling, and quantitative analysis of anatomical structures in medical images. Analogous to natural organisms capable of voluntary movemen...

متن کامل

Delineation of drain Structures from Positron Emission Tomography Images with Deformable Models

Segmentation of positron emission tomography (PET) images is a difficult task. In this study, we propose a new method for delineation of brain structures according to the tracer uptake. The method is based on a new deformable model which is particularly designed for extracting surfaces automatically from noisy images. The automation is achieved by using a global optimization algorithm for minim...

متن کامل

Automatic Extraction of the Central Symmetry (Mid-Sagittal) Plane from Neuroradiology Images

Normal human brains present an approximate bilateral symmetry. This symmetry is reflected in CT and MR images depicting axial and coronal slices of the brain. Though the internal structure of a pathologic brain may depart from its normal bilateral symmetry, the ideal imaginary bilateral symmetry plane remains invariant. This plane is often referred to as the mid-sagittal plane of the brain. Aut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 2005